
216
Ortiz, Y., & Mier, M. (Julio - diciembre 2025). Inuencia de la radiación solar en la acumulación de materia seca del llantén forrajero (Plantago lanceolata L.). Sathiri, 20 (2),
199 – 219. https://doi.org/10.32645/13906925.1402
ISSN Electrónico: 2631–2905
Liu, G., Yang, Y., Guo, X., Liu, W., Xie, R., Ming, B., Xue, J., Wang, K., Li, S., & Hou, P. (2023). A global
analysis of dry matter accumulation and allocation for maize yield breakthrough from 1.0 to
25.0 Mg ha−1. Resources, Conservation and Recycling, 188.
Ma, Q., You, Y., Shen, Y., & Wang, Z. (2024). Adjusting sowing window to mitigate climate warming
eects on forage oats production on the Tibetan Plateau. Agricultural Water Management,
293. https://doi.org/10.1016/j.agwat.2024.108712
Masiwal, R., Sharma, C., Ranjan, A., Radhakrishnan, S. R., Shukla, D. K., Bambal, V. K., & Uniyal, S.
K. (2022). Long-term variability of trace gases over the Indian Western Himalayan Region.
Science of the Total Environment, 806. https://doi.org/10.1016/j.scitotenv.2021.150127
Medina‐van Berkum, P., Schmöckel, E., Bischo, A., Carrasco, N., Catford, J. A., Feldmann, R.,
Groten, K., Henry, H. A., Bucharova, A., Hänniger, S., Luong, J., Meis, J., Oetama, V., Pärtel, M.,
Power, S., Villellas, J., Welk, E., Wingler, A., Rothe, B., … Unsicker, S. (2024). Plant geographic
distribution inuences chemical defences in native and introduced Plantago lanceolata
populations. Functional Ecology, 38(4), 883–896. https://doi.org/10.1111/1365-2435.14535
Met Éireann. (2019). Clima de Irlanda. Met Éireann.
Minneé, E. M. K., Kuhn-Sherlock, B., Pinxterhuis, I. J. B., & Chapman, D. F. (2019). Meta-analyses
comparing the nutritional composition of perennial ryegrass (Lolium perenne) and plantain
(Plantago lanceolata) pastures. Journal of New Zealand Grasslands, 81, 117–124. https://doi.
org/10.33584/jnzg.2019.81.402
Miszalski, Z., Kaszycki, P., Śliwa-Cebula, M., Kaczmarczyk, A., Gieniec, M., Supel, P., & Kornaś,
A. (2023). Plasticity of Plantago lanceolata L. in Adaptation to Extreme Environmental
Conditions. International Journal of Molecular Sciences, 24(17). https://doi.org/10.3390/
ijms241713605
Montero, J. (2022). Relación de la radiación solar con la producción de plantas: agroproductivas.
Revista de Investigación e Innovación Agropecuaria y de Recursos Naturales, 9(1), 52–66.
https://doi.org/10.53287/oqym7033yy88k
Murai, Y., Takemura, S., Takeda, K., Kitajima, J., & Iwashina, T. (2009). Altitudinal variation of UV-
absorbing compounds in Plantago asiatica. Biochemical Systematics and Ecology, 37(4),
378–384. https://doi.org/10.1016/j.bse.2009.07.005
Nasca, J., Berone, G., Arroquy, J., Feldkamp, C., & Colombatto, D. (2020). Evaluación de un modelo
de producción de pasturas mediante pruebas empíricas. Revista de Investigaciones
Agropecuarias, 46, 88–95.
Navarrete, S., Kemp, P., Pain, S., & Back, P. (2016). Bioactive compounds, aucubin and acteoside,
in plantain (Plantago lanceolata L.) and their eect on in vitro rumen fermentation. Animal
Feed Science and Technology, 222, 158–167. https://doi.org/10.1016/j.anifeedsci.2016.10.008
Newman, Y., Lambert, B., & Muir, J. (2024). Dening Forage Quality Subtitle: Nutritive Value of
Southern Forages.
Nguyen, T. T., Navarrete, S., Horne, D. J., Donaghy, D. J., & Kemp, P. D. (2022). Forage plantain
(Plantago lanceolata L.): Meta-analysis quantifying the decrease in nitrogen excretion, the
increase in milk production, and the changes in milk composition of dairy cows grazing
pastures containing plantain. In Animal Feed Science and Technology (285). Elsevier B.V.
https://doi.org/10.1016/j.anifeedsci.2022.115244