Factorial design to measure the effect of feeding biopreparations in pigs in the lifting stage
DOI:
https://doi.org/10.32645/13906852.1346Keywords:
Production, food consumption, raw material, nutrient, food industryAbstract
The experimental design using the Completely Randomized Design (CRD) with a factorial arrangement is widely used to measure production factors in pig farms. The main objective was to measure the primary effects of essential oils and their concentration on response variables: weight, weight gain, food consumption, and feed conversion in piglets. The methodology employs a quantitative, experimental, and correlational approach. The sample consisted of 32 experimental units, distributed across four treatments with eight repetitions each. The results highlight a significant increase in weekly weight starting from week 5 with 2% oregano oil, although there were no statistical differences in weight gain. It concludes that essential oils, especially oregano at 2%, significantly influence food consumption and conversion, demonstrating the utility of factorial design in pig research.
Downloads
References
Agudelo Quintero, J., & Mesa-Granda, M. (2022). Eficiencia productiva en cerdos de levante alimentados con materias primas alternativas de países tropicales: meta-análisis. Intropica, 114–132. https://doi.org/10.21676/23897864.4089
Almeida, A. R., Oliveira, N. D., Pinheiro, F. A. S. D., Morais, W. A. de, & Ferreira, L. D. S. (2023). Challenges encountered by natural repellents: Since obtaining until the final product. Pesticide Biochemistry and Physiology, 195, 105538. https://doi.org/10.1016/j.pestbp.2023.105538
Angelakis, E. (2017). Weight gain by gut microbiota manipulation in productive animals. Microbial Pathogenesis, 106, 162–170. https://doi.org/10.1016/j.micpath.2016.11.002
Asmus, M. D., DeRouchey, J. M., Tokach, M. D., Dritz, S. S., Houser, T. A., Nelssen, J. L., & Goodband, R. D. (2014). Effects of lowering dietary fiber before marketing on finishing pig growth performance, carcass characteristics, carcass fat quality, and intestinal weights1,2. Journal of Animal Science, 92(1), 119–128. https://doi.org/10.2527/jas.2013-6679
Atta, A. H., Atta, S. A., Nasr, S. M., & Mouneir, S. M. (2022). Current perspective on veterinary drug and chemical residues in food of animal origin. Environmental Science and Pollution Research, 29(11), 15282–15302. https://doi.org/10.1007/s11356-021-18239-y
Baca C. N., & Ampuero B. A. (2019). Efecto de la inclusión de aceite esencial de orégano en la dieta de lechones destetados sobre parámetros productivos. Revista de Investigaciones Veterinarias del Perú, 30(4), 1537-1542. https://doi.org/10.15381/rivep.v30i4.17145
Barrera Álvarez, A., Torres Navarrete, E., Cevallos Falquez, O., & Pacheco Terán, C. (2023). Respuesta productiva en porcinos en crecimiento con alternativas alimenticias. Revista Científica Arbitrada Multidisciplinaria PENTACIENCIAS, 5(7), 265–275. https://doi.org/10.59169/pentaciencias.v5i7.937
Barrett, C. B., & Carter, M. R. (2010). The Power and Pitfalls of Experiments in Development Economics: Some Non‐random Reflections. Applied Economic Perspectives and Policy, 32(4), 515–548. https://doi.org/10.1093/aepp/ppq023
Britt, J. S., Thomas, R. C., Speer, N. C., & Hall, M. B. (2003). Efficiency of Converting Nutrient Dry Matter to Milk in Holstein Herds. Journal of Dairy Science, 86(11), 3796–3801. https://doi.org/10.3168/jds.S0022-0302(03)73987-3
Carmelo, V. A. O., Banerjee, P., da Silva Diniz, W. J., & Kadarmideen, H. N. (2020). Metabolomic networks and pathways associated with feed efficiency and related-traits in Duroc and Landrace pigs. Scientific Reports, 10(1), 255. https://doi.org/10.1038/s41598-019-57182-4
Cayambe-Padilla, Mariela Alexandra, Viamonte-Garcés, María Isabel, & Orlando-Caicedo, Willan. (2022). Sistemas de manejo de la producción porcina. Caso: Cantón Carlos Julio Arosemena Tola, Ecuador. Revista Arbitrada Interdisciplinaria Koinonía, 7(14), 4-20. https://doi.org/10.35381/r.k.v7i14.1851
Cobellis, G., Trabalza-Marinucci, M., & Yu, Z. (2016). Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. Science of The Total Environment, 545–546, 556–568. https://doi.org/10.1016/j.scitotenv.2015.12.103
ElMaraghy, H., Schuh, G., ElMaraghy, W., Piller, F., Schönsleben, P., Tseng, M., & Bernard, A. (2013). Product variety management. CIRP Annals, 62(2), 629–652. https://doi.org/10.1016/j.cirp.2013.05.007
Ferrer, P., Calvet, S., García-Rebollar, P., Jiménez-Belenguer, A. I., Hernández, P., Piquer, O., & Cerisuelo, A. (2022). The impact of replacing barley by dehydrated orange pulp in finishing pig diets on performance, carcass quality, and gaseous emissions from slurry. Animal, 16(11), 100659. https://doi.org/10.1016/j.animal.2022.100659
Freeman, L., Becvarova, I., Cave, N., MacKay, C., Nguyen, P., Rama, B., Takashima, G., Tiffin, R., van Beukelen, P., & Yathiraj, S. (2011). WSAVA Nutritional Assessment Guidelines. Journal of Feline Medicine and Surgery, 13(7), 516–525. https://doi.org/10.1016/j.jfms.2011.05.009
Gardiner, G. E., Metzler-Zebeli, B. U., & Lawlor, P. G. (2020). Impact of Intestinal Microbiota on Growth and Feed Efficiency in Pigs: A Review. Microorganisms, 8(12), 1886. https://doi.org/10.3390/microorganisms8121886
Granda-Romero, D., Herrera-Gorotiza, F., Romero-Black, W., & Mora-Sánchez, N. (2021). Implementación de modelo de gestión para granjas porcinas en la provincia de El Oro. 593 Digital Publisher CEIT, 6(6), 222-233. https://doi.org/10.33386/593dp.2021.6.737
Godinho, R. M., Bastiaansen, J. W. M., Sevillano, C. A., Silva, F. F., Guimarães, S. E. F., & Bergsma, R. (2018). Genotype by feed interaction for feed efficiency and growth performance traits in pigs1. Journal of Animal Science, 96(10), 4125–4135. https://doi.org/10.1093/jas/sky304
Gutiérrez León, F. A., Guachamin, D., & Portilla, A. (2017). Valoración nutricional de tres alternativas alimenticias en el crecimiento y engorde de cerdos (Sus scrofa domestica) Nanegal-Pichincha. La Granja, 26(2), 155. https://doi.org/10.17163/lgr.n26.2017.13
Hong, J.-C., Steiner, T., Aufy, A., & Lien, T.-F. (2012). Effects of supplemental essential oil on growth performance, lipid metabolites and immunity, intestinal characteristics, microbiota and carcass traits in broilers. Livestock Science, 144(3), 253–262. https://doi.org/10.1016/j.livsci.2011.12.008
Hoshmand, R. (2018). Design of Experiments for Agriculture and the Natural Sciences. Chapman and Hall/CRC. https://doi.org/10.1201/9781315276021
Jones, J. W., Antle, J. M., Basso, B., Boote, K. J., Conant, R. T., Foster, I., Godfray, H. C. J., Herrero, M., Howitt, R. E., Janssen, S., Keating, B. A., Munoz-Carpena, R., Porter, C. H., Rosenzweig, C., & Wheeler, T. R. (2017). Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agricultural Systems, 155, 269–288. https://doi.org/10.1016/j.agsy.2016.09.021
Lan, L. T. T., Hung, L. T., Thu, N. T. A., Loc, H. T., Liang, J. B., Thiet, N., & Ngu, N. T. (2020). Effects of Substituting Taro (Colocasia esculenta) Wastes Silage in Diets on Growth and Nutrient Digestibility In Pigs. Journal of Animal Health and Production, 9(2). https://doi.org/10.17582/journal.jahp/2021/9.2.112.118
Lee, J.-W., Kim, D.-H., Kim, Y.-B., Jeong, S.-B., Oh, S.-T., Cho, S.-Y., & Lee, K.-W. (2020). Dietary Encapsulated Essential Oils Improve Production Performance of Coccidiosis-Vaccine-Challenged Broiler Chickens. Animals, 10(3), 481. https://doi.org/10.3390/ani10030481
Lestingi, A. (2024). Alternative and Sustainable Protein Sources in Pig Diet: A Review. Animals, 14(2), 310. https://doi.org/10.3390/ani14020310
Lestingi, A., Colonna, M. A., Marsico, G., Tarricone, S., & Facciolongo, A. M. (2019). Effects of legume seeds and processing treatment on growth, carcass traits and blood constituents of fattening lambs. South African Journal of Animal Science, 49(5), 799–809. https://doi.org/10.4314/sajas.v49i5.2
Lucas, M. E., Hemsworth, L. M., Butler, K. L., Morrison, R. S., Tilbrook, A. J., Marchant, J. N., Rault, J.-L., Galea, R. Y., & Hemsworth, P. H. (2024). Early human contact and housing for pigs – part 2: resilience to routine husbandry practices. Animal, 18(6), 101165. https://doi.org/10.1016/j.animal.2024.101165
Mariotti, M., Lombardini, G., Rizzo, S., Scarafile, D., Modesto, M., Truzzi, E., Benvenuti, S., Elmi, A., Bertocchi, M., Fiorentini, L., Gambi, L., Scozzoli, M., & Mattarelli, P. (2022). Potential Applications of Essential Oils for Environmental Sanitization and Antimicrobial Treatment of Intensive Livestock Infections. Microorganisms, 10(4), 822. https://doi.org/10.3390/microorganisms10040822
Menezes Lima, J. A., Correa Magalhães Filho, F. J., Constantino, M., & Formagini, E. L. (2020). Techno-economic and performance evaluation of energy production by anaerobic digestion in Brazil: bovine, swine and poultry slaughterhouse effluents. Journal of Cleaner Production, 277, 123332. https://doi.org/10.1016/j.jclepro.2020.123332
Miles, R. D., Wilson, H. R., Arafa, A. S., Coligado, E. C., & Ingram, D. R. (1981). The Performance of Bobwhite Quail Fed Diets Containing Lactobacilli. Poultry Science, 60(4), 894–896. https://doi.org/10.3382/ps.0600894
Montenegro, M. del C., Carballo, C., Gonzalez Barrios, P. M., Castro, G., Barlocco, N., & Llambi, S. (2019). Inclusion of Rice Bran in Diets for Post-weaning Piglets: Effect on the Productive Behavior and Carcass Traits. Agrociencia, 23(1). https://doi.org/10.31285/AGRO.23.1.11
Naujokienė, V., Bleizgys, R., Venslauskas, K., & Paulikienė, S. (2022). Climate-Smart Holistic Management System Criteria’s Effectiveness on Milk Production in Lithuania. Agriculture, 12(6), 804. https://doi.org/10.3390/agriculture12060804
Oliveira, M. de, Lima, V. M., Yamashita, S. M. A., Alves, P. S., & Portella, A. C. (2018). Experimental Planning Factorial: A brief Review. International Journal of Advanced Engineering Research and Science, 5(6), 166–177. https://doi.org/10.22161/ijaers.5.6.28
Omonijo, F. A., Ni, L., Gong, J., Wang, Q., Lahaye, L., & Yang, C. (2018). Essential oils as alternatives to antibiotics in swine production. Animal Nutrition, 4(2), 126–136. https://doi.org/10.1016/j.aninu.2017.09.001
Osaba, E., Villar-Rodriguez, E., Del Ser, J., Nebro, A. J., Molina, D., LaTorre, A., Suganthan, P. N., Coello, C. A., & Herrera, F. (2021). A Tutorial On the design, experimentation and application of metaheuristic algorithms to real-World optimization problems. Swarm and Evolutionary Computation, 64, 100888. https://doi.org/10.1016/j.swevo.2021.100888
Rexroad, C., Vallet, J., Matukumalli, L. K., Reecy, J., Bickhart, D., Blackburn, H., Boggess, M., Cheng, H., Clutter, A., Cockett, N., Ernst, C., Fulton, J. E., Liu, J., Lunney, J., Neibergs, H., Purcell, C., Smith, T. P. L., Sonstegard, T., Taylor, J., … Wells, K. (2019). Genome to Phenome: Improving Animal Health, Production, and Well-Being – A New USDA Blueprint for Animal Genome Research 2018–2027. Frontiers in Genetics, 10. https://doi.org/10.3389/fgene.2019.00327
Rius, A. G., McGilliard, M. L., Umberger, C. A., & Hanigan, M. D. (2010). Interactions of energy and predicted metabolizable protein in determining nitrogen efficiency in the lactating dairy cow. Journal of Dairy Science, 93(5), 2034–2043. https://doi.org/10.3168/jds.2008-1777
Rybarczyk, A., Bogusławska-Wąs, E., & Dłubała, A. (2021). Effect of BioPlus YC Probiotic Supplementation on Gut Microbiota, Production Performance, Carcass and Meat Quality of Pigs. Animals, 11(6), 1581. https://doi.org/10.3390/ani11061581
Sauerbrei, W., Royston, P., & Binder, H. (2007). Selection of important variables and determination of functional form for continuous predictors in multivariable model building. Statistics in Medicine, 26(30), 5512–5528. https://doi.org/10.1002/sim.3148
Shah, I. A. (2019). Evaluation of the Test Unit for High Density Apple Experiments. Indian Journal of Pure & Applied Biosciences, 7(6), 408–411. https://doi.org/10.18782/2582-2845.7656
Shao, Y., Peng, Q., Wu, Y., Peng, C., Wang, S., Zou, L., Qi, M., Peng, C., Liu, H., Li, R., Xiong, X., & Yin, Y. (2023). El efecto de un aceite esencial mezclado en el rendimiento del crecimiento, la salud intestinal y la microbiota en los pigles de los primeros. Nutrientes, 15(2), 450. https://doi.org/10.3390/nu15020450
Simitzis, P. E. (2017). Enrichment of Animal Diets with Essential Oils—A Great Perspective on Improving Animal Performance and Quality Characteristics of the Derived Products. Medicines, 4(2), 35. https://doi.org/10.3390/medicines4020035
Ståhle, L., & Wold, S. (1987). Partial least squares analysis with cross‐validation for the two‐class problem: A Monte Carlo study. Journal of Chemometrics, 1(3), 185–196. https://doi.org/10.1002/cem.1180010306
Stevanović, Z., Bošnjak-Neumüller, J., Pajić-Lijaković, I., Raj, J., & Vasiljević, M. (2018). Essential Oils as Feed Additives—Future Perspectives. Molecules, 23(7), 1717. https://doi.org/10.3390/molecules23071717
Su, G., Zhou, X., Wang, Y., Chen, D., Chen, G., Li, Y., & He, J. (2020). Dietary supplementation of plant essential oil improves growth performance, intestinal morphology and health in weaned pigs. Journal of Animal Physiology and Animal Nutrition, 104(2), 579–589. https://doi.org/10.1111/jpn.13271
Thornton, P. K. (2010). Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2853–2867. https://doi.org/10.1098/rstb.2010.0134
Valverde Lucio, A., Gonzalez-Martínez, A., Alcívar Cobeña, J. L., & Rodero Serrano, E. (2021). Characterization and Typology of Backyard Small Pig Farms in Jipijapa, Ecuador. Animals, 11(6), 1728. https://doi.org/10.3390/ani11061728
Vermeer, H. M., de Greef, K. H., & Houwers, H. W. J. (2014). Space allowance and pen size affect welfare indicators and performance of growing pigs under Comfort Class conditions. Livestock Science, 159, 79–86. https://doi.org/10.1016/j.livsci.2013.10.021
Wells C. W. (2023). Efectos de los aceites esenciales en las características económicamente importantes de las especies de rumín: Una revisión exhaustiva. Nutrición animal (Zhongguo xu mu shou yi xue hui), 16, 1o10. https://doi.org/10.1016/j.aninu.2023.05.017
Yan, L., Wang, J. P., Kim, H. J., Meng, Q. W., Ao, X., Hong, S. M., & Kim, I. H. (2010). Influence of essential oil supplementation and diets with different nutrient densities on growth performance, nutrient digestibility, blood characteristics, meat quality and fecal noxious gas content in grower–finisher pigs. Livestock Science, 128(1–3), 115–122. https://doi.org/10.1016/j.livsci.2009.11.008
Zeng, Z., Zhang, S., Wang, H., & Piao, X. (2015). Essential oil and aromatic plants as feed additives in non-ruminant nutrition: a review. Journal of Animal Science and Biotechnology, 6(1), 7. https://doi.org/10.1186/s40104-015-0004-5
Zhai, H., Liu, H., Wang, S., Wu, J., & Kluenter, A.-M. (2018). Potential of essential oils for poultry and pigs. Animal Nutrition, 4(2), 179–186. https://doi.org/10.1016/j.aninu.2018.01.005
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Edison Stalin Vélez Arteaga, Víctor Ernesto Márquez Pérez, Carlos Octavio Larrea-Izurieta

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
El autor mantiene los derechos morales e intelectuales de su obra, autorizando a la editorial de la revista Visión Empresarial la difusión y divulgación de su contenido con fines estrictamente académicos y de investigación, sin fines de lucro.
